GMRES Methods for Least Squares Problems

نویسندگان

  • Ken Hayami
  • Jun-Feng Yin
  • Tokushi Ito
چکیده

The standard iterative method for solving large sparse least squares problems min ∈Rn ‖ −A ‖2, A ∈ Rm×n is the CGLS method, or its stabilized version LSQR, which applies the (preconditioned) conjugate gradient method to the normal equation ATA = AT . In this paper, we will consider alternative methods using a matrix B ∈ Rn×m and applying the Generalized Minimal Residual (GMRES) method to min ∈Rm ‖ −AB ‖2 or min ∈Rn ‖B −BA ‖2. Next, we give a sufficient condition concerning B for the GMRES methods to give a least squares solution without breakdown for arbitrary , for over-determined, under-determined and possibly rank-deficient problems. We then give a convergence analysis of the GMRES methods as well as the CGLS method. Then, we propose using the robust incomplete factorization (RIF) for B. Finally, we show by numerical experiments on over-determined and under-determined problems that, for ill-conditioned problems, the GMRES methods with RIF give least squares solutions faster than the CGLS and LSQR methods with RIF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Krylov subspace methods for the solution of least-squares problems

and Kk(BA,Br) = span{Br, (BA)Br, . . . , (BA)k−1Br}, (3) where B ∈ Rn×m is the mapping and preconditioning matrix, and apply Krylov subspace iteration methods on these subspaces. For overdetermined problems, applying the standard CG method to Kk(BA,Br) leads to the preconditioned CGLS [3] or CGNR [9] method while for underdetermined problems it leads to preconditioned CGNE [9] method. The GMRES...

متن کامل

Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods

Minimum residual norm iterative methods for solving linear systems Ax = b can be viewed as, and are often implemented as, sequences of least squares problems involving Krylov subspaces of increasing dimensions. The minimum residual method (MINRES) [C. Paige and M. Saunders, SIAM J. Numer. Anal., 12 (1975), pp. 617–629] and generalized minimum residual method (GMRES) [Y. Saad and M. Schultz, SIA...

متن کامل

A Set of GMRES

In this report we describe the implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of simplicity, exibility and eeciency the GMRES solvers have been implemented using the reverse communication mechanism for the matrix-vector product, the preconditioning and the...

متن کامل

A Set of GMRES Routines for Real and Complex Arithmetics

In this report we describe the implementations of the GMRES algorithm for both real and complex, single and double precision arithmetics suitable for serial, shared memory and distributed memory computers. For the sake of simplicity, flexibility and efficiency the GMRES solvers have been implemented using the reverse communication mechanism for the matrixvector product, the preconditioning and ...

متن کامل

A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition

A new algorithm is presented for computing a canonical rank-R tensor approximation that has minimal distance to a given tensor in the Frobenius norm, where the canonical rank-R tensor consists of the sum of R rank-one tensors. Each iteration of the method consists of three steps. In the first step, a tentative new iterate is generated by a stand-alone one-step process, for which we use alternat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010